How to Change default types globally in tensorflow?

Customizing TensorFlow's Global Default Data Types

To change default types globally in TensorFlow, you can modify the default TensorFlow session configuration. This allows you to set the default data types for operations, such as float16, float32, or float64. Here's a detailed explanation of how to do this with examples:

  1. Create a TensorFlow Session Configuration:
    • Start by creating a tf.compat.v1.ConfigProto() object to define the session configuration.

Example:

import tensorflow as tf
 
config = tf.compat.v1.ConfigProto()
  1. Configure Default Data Type:
    • Use the tf.float16, tf.float32, or tf.float64 options to set the default data type for operations.

Example:

config.floatx = tf.float16
  1. Configure Default Data Type for GPU:
    • If you want to set a specific default data type for GPU operations, you can use the gpu_options attribute to create a tf.compat.v1.GPUOptions() object and set the desired data type.

Example:

config.gpu_options.allow_growth = True
config.gpu_options.force_gpu_compatible = True
config.gpu_options.default_executable_timeout = 5000
config.gpu_options.per_process_gpu_memory_fraction = 0.5
config.gpu_options.visible_device_list = "0"
config.gpu_options.floatx = tf.float32

In the above example, we set various GPU-related options along with the default data type for GPU operations to tf.float32.

  1. Configure Default Data Type for CPU:
    • To set the default data type for CPU operations, use the intra_op_parallelism_threads and inter_op_parallelism_threads attributes of the config object.

Example:

config.intra_op_parallelism_threads = 2
config.inter_op_parallelism_threads = 2
config.floatx = tf.float64

In this example, we set the default data type for CPU operations to tf.float64 along with the number of parallel threads.

  1. Create TensorFlow Session with the Modified Configuration:
    • Finally, create a TensorFlow session using the modified configuration.

Example:

sess = tf.compat.v1.Session(config=config)

Now, any TensorFlow operation performed within this session will use the default data type specified in the session configuration.

By following these steps and modifying the TensorFlow session configuration, you can change the default data types globally in TensorFlow. This allows you to set the default data types for both CPU and GPU operations, providing flexibility and control over the precision of computations.